Roulette Odds Strategy

  1. Roulette Odds Red
  2. Roulette Payout Chart
  3. Roulette Odds Strategy Definition
  4. Roulette Odds Strategy Games

In this article, we’ll cover the Roulette Corner Bet and explain why is it a very popular bet that even deserves to be examined separately from other bets on numbers. The bet owes its popularity to the fact that it has odds and payout that feel neither too high nor too low, and it’s commonly used to cover a large portion of the layout.

The Roulette Corner Bet belongs to the inside bets. It is a way of betting on the exact number(s) by placing a bet on four numbers at once. You are limited to those groups of four numbers that are actually touching each other on the roulette layout with numbers. The bet is made by placing a chip on the cross between the four numbers. This bet is also known as the four-number bet, which is creating confusion with another bet as we’ll explain below, or, simply, “corners”.

Roulette Corner Bet Odds and Payout

The Martingale Betting System The Martingale Strategy is one of the most popular betting patterns in the world of gambling. It has gained popularity due to its simplicity, which allows players to successfully play their games at the roulette table. However, it does not means the Martingale betting strategy works on the roulette wheel. I would use a Martingale only on the even-money outside bets at roulette, the odd or even, high or low, red or black. These bets give the player 18 chances to win with 20 chances to lose on the American double-zero wheels and 18 chances to win with 19 chances to lose on the European Roulette (single-zero wheels). The betting odds in roulette of hitting a single number with a straight-up bet are 37 to 1, since there are 38 numbers (1 to 36, plus 0 and 00). However, the house only pays out 35 to 1 on winning.

The main appeal of the Roulette Corner Bet comes from the fact that you’re still getting a very high payout, 8:1 or $80 for every $10 staked, but the chance isn’t as high as when you’re betting on a single number.

While the payout is 8 to 1, odds against winning are 8 1⁄4 to 1 in European or French roulette, and less favorable 8 1⁄2 to 1 on American roulette with a double zero. Just like any other bet on roulette, it’s worse when played on a double zero wheel. Read more about the different roulette game variations.

There are 22 different spots on the roulette layout where a four-number bet can be placed. So that’s a total of 22 different combinations for a Roulette Corner Bet, and any other combination of four numbers would only be made possible by placing individual bets on each respective number.

Just like with all other bets, it’s important to play Roulette Corner Bet at a table that has a single zero (European roulette). This setup has a 2.70% house edge on all bets, including the Roulette Corner Bet, while American roulette with a double zero has 5.26% house edge. For Corner Bets, it’s irrelevant if the table has French rules as these apply to two-sided bets only. Your chance to win on a Corner Bet is 4 / 37 = 10.8%, in case of a European roulette table.

How to place a corner bet

As briefly explained in the introduction, a corner bet is an inside bet, which means it’s placed on the part of the roulette layout that displays numbers to bet on. If a chip is placed at any cross-section of four numbers, the dealer will immediately know it’s a corner bet that covers those four numbers. If any of those numbers land, the payout will be 8x the value of the chip.

Four-Number Bet

There is an additional, 23rd Roulette Corner Bet but it has its own name – the Four-Number Bet. It is made by placing a chip at the common corner of numbers 0 and 1, and it covers numbers 0, 1, 2 and 3. This bet has exactly the same chance and payout as the other Roulette Corner Bets. The bet is also known as Transversale de Quatre in French, and it’s a better name as it avoids the Four-Number Bet / Four-Numbers Bet confusion.

On American roulette, with two zeros, this bet is called a Five Number Bet as it involves five numbers, including 00. This is likely the worst bet you can make in roulette, while the Four-Number Bet is a pretty solid one.

Is a Roulette Corner Bet a good bet to make?

Yes, as the chance to win is high enough, and definitely higher than a single-number bet, a double bet (that covers two numbers) or a three-bet (that covers three numbers). The corner bet is mostly used when players want to quickly cover a larger portion of the layout as it is easier to cover it with corner bets than with individual single bets.

The only bet to avoid at all costs is the Five Number Bet. Before you start betting with real money, we read all the roulette rules!

Corner Bet Strategies

Most Roulette Corner Bet strategies take advantage of the fact that you cover four numbers with a single chip, which then makes this bet bread and butter of all strategies that involve covering more than 50% of the wheel. These strategies give the player an advantage as he won’t be losing as much, and therefore the insanely high volatility of roulette is tamed just a bit.

The Roulette Corner Bet is actually so good that we’ve based our own 7 Corners Roulette Strategy on it. Our strategy will give the player a 75.7% chance of winning while only 24.3% of spins will be losing ones, as we’re covering 28 out of 37 numbers. When we win, we’ll get 8 chips and lose 6 for a profit of 2 chips, and when we lose, we’ll lose 7 chips. If we would win 3 out of 4 spins, we’d win 8 chips and lose 7, winning 1 chip. There is also a secret trick that goes to our advantage – the number 32 is covered twice, so if it lands we’ll make a staggering profit of 10 chips!

Our 7 Corners Roulette Strategy, as well as all other strategies that increase the chance of a win, further allows a player to utilize one of the progressive betting strategies – these will behave in a much more reasonable way once it’s no longer a coin toss.

Sloto Cash Casino

Play NOw

TonyBet Casino

Play NOw

GENESIS CASINO

Play NOw

PlayOJO Casino

Play NOw

CASINO JOY

Play NOw

VEGAS HERO CASINO

Play NOw
  • Roulette Analysis
  • Miscellaneous

Introduction

The Gambler's Fallacy is the mistaken belief that if an independent event has not happened in a long time, then it becomes overdue and more likely. It is also equally incorrect that if an outcome has happened a disproportionate number of times lately, compared to statistical expectations, then it becomes overheated and less likely to occur the next time. An example of this fallacious thinking might be that if the number 23 hasn't been drawn in a 6-49 lottery the last 100 games, then it becomes more likely to be drawn during the next drawing.

Many worthless betting strategies and systems are based on belief in the Gambler's Fallacy. I got the idea for writing about this after reading an 888 online roulette article by Frank Scoblete entitled How to Take Advantage of Roulette Hot Spots. In that article, Scoblete recommends taking a count of each outcome for 3,700 spins in single-zero roulette and 3,800 spins in double-zero roulette in the hunt for 'hot numbers.' Never mind that this would take about 100 hours to make this many observations, assuming the industry standard of 38 spins per hour.

Before going further, let me say that I strongly believe modern roulette wheels made by top brands like Cammegh are extremely precise and any bias would be minuscule compared to the house advantage. Thus, testing a modern roulette for bias would be a total waste of time. Now, testing a 30-year-old hand-me-down wheel in a banana republic might be another story. However, you're on your own if you win a lot of money from said casino and try to leave with it.

That said, if you track 3,800 outcomes in single-zero roulette, the average number of times any number will hit is 3800/38=100. I ran a simulation of over 1.3 trillion spins, counting how many times each number was hit, sorting the outcomes to find the most frequent number and how many times it was observed, and keeping a count of how many times the most frequent number in each simulation was seen.

Hottest Number in 3,800 Spins of Double-Zero Roulette

As a former actuary, I hate to use a layman's term like the 'hottest number,' but that is how gamblers talk so will go with that. That said, following are the results of the count of the hottest number in millions of 3800-spin simulations.

Count of the Hottest Number in 3,800 Spins on Double-Zero Wheel

Chart
StatisticValue
Mean 122.02
Median 121
Mode 120
90th Percentile 128
95th Percentile 131
99th Percentile 136
99.9th Percentile 142

Here is what the table above means in plain simple English.

  • The mean, or average, count of the hottest number is 122.02.
  • The median count of the most frequent number is 121. This means that over 50% of time the most frequent number appeared 121 times or less, as well as 121 times or more. This is possible because the probability of 121 observations is in both groups.
  • The mode, or most count of the hottest number is 120, which happens 8.29% of the time.
  • The 90th percentile is the smallest number such that the probability the count of the hottest number is at least 90% .
  • The 95th percentile is the smallest number such that the probability the count of the hottest number is at least 95%.
  • The 99th percentile is the smallest number such that the probability the count of the hottest number is at least 99%.
  • The 99.9th percentile is the smallest number such that the probability the count of the hottest number is at least 99.9%.

Hottest Number in 3,700 Spins of Single-Zero Roulette

The results are very similar with 3,700 spins tracked on a single-zero wheel. Following is a summary of the results.

Count of the Hottest Number in 3,700 Spins on Single-Zero Wheel

StatisticValue
Mean 121.90
Median 121
Mode 120
90th Percentile 128
95th Percentile 131
99th Percentile 136
99.9th Percentile 142

The following table shows the full results of the simulation on both wheels. The two commulative columns show the probability that the count of the hottest number is the number on the left column or more. For example, the probability the hottest number in 3,700 spins of single-zero roulette is 130 or more is 0.072044.

Summary of the Count of the Hottest Number in 3,700 Spins of Single-Zero Roulette and 3,800 spins of Double-Zero Roulette

CountProbability
Single Zero
Cummulative
Single Zero
Probability
Double Zero
Cummulative
Double Zero
160 or More 0.000001 0.000001 0.000001 0.000001
159 0.000000 0.000001 0.000000 0.000001
158 0.000001 0.000001 0.000001 0.000001
157 0.000001 0.000002 0.000001 0.000002
156 0.000001 0.000003 0.000001 0.000003
155 0.000002 0.000005 0.000002 0.000005
154 0.000003 0.000009 0.000003 0.000008
153 0.000005 0.000013 0.000005 0.000013
152 0.000007 0.000020 0.000008 0.000021
151 0.000012 0.000032 0.000012 0.000033
150 0.000017 0.000049 0.000018 0.000051
149 0.000026 0.000075 0.000027 0.000077
148 0.000038 0.000114 0.000041 0.000118
147 0.000060 0.000174 0.000062 0.000180
146 0.000091 0.000265 0.000092 0.000273
145 0.000132 0.000397 0.000137 0.000409
144 0.000195 0.000592 0.000199 0.000608
143 0.000282 0.000874 0.000289 0.000898
142 0.000409 0.001283 0.000421 0.001319
141 0.000580 0.001863 0.000606 0.001925
140 0.000833 0.002696 0.000860 0.002784
139 0.001186 0.003882 0.001215 0.003999
138 0.001652 0.005534 0.001704 0.005703
137 0.002315 0.007849 0.002374 0.008077
136 0.003175 0.011023 0.003286 0.011363
135 0.004355 0.015378 0.004489 0.015852
134 0.005916 0.021295 0.006088 0.021940
133 0.007939 0.029233 0.008196 0.030136
132 0.010601 0.039834 0.010908 0.041044
131 0.013991 0.053824 0.014384 0.055428
130 0.018220 0.072044 0.018757 0.074185
129 0.023498 0.095542 0.024114 0.098299
128 0.029866 0.125408 0.030603 0.128901
127 0.037288 0.162696 0.038228 0.167130
126 0.045771 0.208467 0.046898 0.214027
125 0.055165 0.263632 0.056310 0.270337
124 0.064853 0.328485 0.066020 0.336357
123 0.074178 0.402662 0.075236 0.411593
122 0.081929 0.484591 0.082885 0.494479
121 0.087158 0.571750 0.087696 0.582174
120 0.088520 0.660269 0.088559 0.670734
119 0.084982 0.745252 0.084406 0.755140
118 0.076454 0.821705 0.075245 0.830385
117 0.063606 0.885312 0.061851 0.892236
116 0.048069 0.933381 0.046111 0.938347
115 0.032432 0.965813 0.030604 0.968952
114 0.019117 0.984930 0.017664 0.986616
113 0.009567 0.994496 0.008614 0.995230
112 0.003894 0.998390 0.003420 0.998650
111 0.001257 0.999647 0.001065 0.999715
110 0.000297 0.999944 0.000243 0.999958
109 0.000050 0.999994 0.000038 0.999996
108 or Less 0.000006 1.000000 0.000004 1.000000

Count of the Hottest Numbers in 300 Spins in Double-Zero Roulette

What if you don't want to spend 100 hours gathering data on a single wheel? Some casinos are kind enough to give you, on a silver platter, the number of times in the last 300 spins the four 'hottest' and 'coolest' numbers occurred. The image at the top of the page shows an example taken on a double-zero wheel at the Venetian.

In 300 spins, the average number of wins on a double-zero wheel for any number is 300/38=7.9. As you can see from the image above, the four hottest numbers were 20, 5, 29, and 2, which occurred 15, 14, 13, and 12 times respectively. Is this unusual? No. In a simulation of over 80 billion spins, the most frequent number, in 300-spin experiments, appeared most frequently at 14 times with a probability of 27.4%. The most likely total of the second, third, and fourth most frequent numbers was 13, 12, and 12 times respectively, with probabilities of 37.9%, 46.5%, and 45.8%. So the results of the 'hottest' numbers in the image above were a little more flat than average.

The following table shows the probabilities of the four hottest numbers in 300 spins of double-zero roulette. For example, the probability the third most frequent number happens 15 times is 0.009210.

Count of the Hottest Four Numbers in 300 Spins on a Double-Zero Wheel

ObservationsProbability
Most Frequent
Probability Second
Most Frequent
Probability Third
Most Frequent
Probability Fourth
Most Frequent
25 or More 0.000022 0.000000 0.000000 0.000000
24 0.000051 0.000000 0.000000 0.000000
23 0.000166 0.000000 0.000000 0.000000
22 0.000509 0.000000 0.000000 0.000000
21 0.001494 0.000001 0.000000 0.000000
20 0.004120 0.000009 0.000000 0.000000
19 0.010806 0.000075 0.000000 0.000000
18 0.026599 0.000532 0.000003 0.000000
17 0.060526 0.003263 0.000060 0.000001
16 0.123564 0.016988 0.000852 0.000020
15 0.212699 0.071262 0.009210 0.000598
14 0.274118 0.215025 0.068242 0.011476
13 0.212781 0.379097 0.283768 0.117786
12 0.067913 0.270747 0.464748 0.457655
11 0.004615 0.042552 0.168285 0.383900
10 0.000017 0.000448 0.004830 0.028544
9 0.000000 0.000000 0.000001 0.000020
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth hottest numbers in millions of 300-spin simulations of double-zero roulette.

Summary of the Count of the Four Most Frequent Numbers in 300 Spins of Double-Zero Wheel

OrderMeanMedianMode
First 14.48 14 14
Second 13.07 13 13
Third 12.27 12 12
Fourth 11.70 12 12

Count of the Coolest Numbers in 300 Spins in Double-Zero Roulette

The next table shows the probability of each count of the four collest numbers in 300 spins of double-zero roulette.

Roulette Odds Red

Count of the Coolest Four Numbers in 300 Spins on a Double-Zero Wheel

ObservationsProbability Least
Frequent
Probability Second
Least Frequent
Probability Third
Least Frequent
Probability Fourth
Least Frequent
0 0.012679 0.000063 0.000000 0.000000
1 0.098030 0.005175 0.000135 0.000002
2 0.315884 0.088509 0.012041 0.001006
3 0.416254 0.420491 0.205303 0.063065
4 0.150220 0.432638 0.595139 0.522489
5 0.006924 0.052945 0.185505 0.401903
6 0.000008 0.000180 0.001878 0.011534
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth coolest numbers in the 300-spin simulations of double-zero roulette.

Summary of the count of the Four Least Frequent Numbers on a Double-Zero Wheel

OrderMeanMedianMode
Least 2.61 3 3
Second Least 3.44 3 4
Third Least 3.96 4 4
Fourth Least 4.36 4 4

Count of the Hottest Numbers in 300 Spins of Single-Zero Roulette

In 300 spins, the average number of wins on a single-zero wheel for any number is 300/37=8.11. The next table shows the probability of each count of the four coolest numbers in 300 spins of double-zero roulette. For example, the probability the third most frequent number happens 15 times is 0.015727.

Count of the Hottest Four Numbers in 300 Spins on a Single-Zero Wheel

ObservationsProbability
Most Frequent
Probability Second
Most Frequent
Probability Third
Most Frequent
Probability Fourth
Most Frequent
25 or More 0.000034 0.000000 0.000000 0.000000
24 0.000078 0.000000 0.000000 0.000000
23 0.000245 0.000000 0.000000 0.000000
22 0.000728 0.000000 0.000000 0.000000
21 0.002069 0.000002 0.000000 0.000000
20 0.005570 0.000018 0.000000 0.000000
19 0.014191 0.000135 0.000000 0.000000
18 0.033833 0.000905 0.000008 0.000000
17 0.074235 0.005202 0.000125 0.000001
16 0.144490 0.025286 0.001624 0.000050
15 0.232429 0.097046 0.015727 0.001286
14 0.269735 0.259360 0.101259 0.021054
13 0.177216 0.382432 0.347102 0.175177
12 0.043266 0.208137 0.429715 0.508292
11 0.001879 0.021373 0.102979 0.283088
10 0.000003 0.000103 0.001461 0.011049
9 0.000000 0.000000 0.000000 0.000002
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth hottest numbers in millions of 300-spin simulations of double-zero roulette.

Summary — Count of the Four Hottest Numbers — Double-Zero Wheel

OrderMeanMedianMode
First 14.74 15 14
Second 13.30 13 13
Third 12.50 12 12
Fourth 11.92 12 12

Count of the Coolest Numbers in 300 Spins in Single-Zero Roulette

The next table shows the probability of each count of the four coolest numbers in 300 spins of double-zero roulette. For example, the probability the third coolest numbers will be observed five times is 0.287435.

Count of the Coolest Four Numbers in 300 Spins on a Double-Zero Wheel

Roulette Payout Chart

ObservationsProbability Least
Frequent
Probability Second
Least Frequent
Probability Third
Least Frequent
Probability Fourth
Least Frequent
0 0.009926 0.000038 0.000000 0.000000
1 0.079654 0.003324 0.000068 0.000001
2 0.275226 0.062392 0.006791 0.000448
3 0.419384 0.350408 0.140173 0.034850
4 0.200196 0.484357 0.557907 0.406702
5 0.015563 0.098547 0.287435 0.521238
6 0.000050 0.000933 0.007626 0.036748
7 0.000000 0.000000 0.000001 0.000013
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth coolest numbers in the 300-spin simulations of single-zero roulette.

Summary of the count of the Four Least Frequent Numbers on a Single-Zero Wheel

OrderMeanMedianMode
Least 2.77 3 3
Second Least 3.62 4 4
Third Least 4.15 4 4
Fourth Least 4.56 5 5

The least I hope you have learned from this article is it is to be expected that certain numbers will come up more than others. To put it in other words, it is natural that some numbers will be 'hot' and some 'cool.' In fact, such differences from the mean are highly predictable. Unfortunately, for roulette players, we don't know which numbers will be 'hot,' just that some of them almost certainly will be. I would also like to emphasize, contrary to the Gambler's Fallacy, that on a fair roulette wheel that every number is equally likely every spin and it makes no difference what has happened in the past.

Finally, it should not be interpreted that we give an endorsement to the 888 Casino, which we linked to earlier. I am very bothered by this rule in their rule 6.2.B. Before getting to that, let me preface with a quote from rule 6.1, which I'm fine with.

'If we reasonably determine that you are engaging in or have engaged in fraudulent or unlawful activity or conducted any prohibited transaction (including money laundering) under the laws of any jurisdiction that applies to you (examples of which are set out at section 6.2 below), any such act will be considered as a material breach of this User Agreement by you. In such case we may close your account and terminate the User Agreement in accordance with section 14 below and we are under no obligation to refund to you any deposits, winnings or funds in your account.' -- Rule 6.1

Let's go further now:

The following are some examples of 'fraudulent or unlawful activity' -- Rule 6.2

Roulette Odds Strategy Definition

Next, here is one of many examples listed as rule 6.2.B

'Unfair Betting Techniques: Utilising any recognised betting techniques to circumvent the standard house edge in our games, which includes but is not limited to martingale betting strategies, card counting as well as low risk betting in roulette such as betting on red/black in equal amounts.' -- Rule 6.2.B

Let me make it perfectly clear that all betting systems, including the Martingale, not only can't circumvent the house edge, they can't even dent it. It is very mathematically ignorant on the part of the casino to fear any betting system. Why would any player trust this casino when the casino can seize all their money under the reason that the player was using a betting system? Any form of betting could be called a betting system, including flat betting. Casino 888 normally has a pretty good reputation, so I'm surprised they would lower themselves to this kind of rogue rule.

Roulette Odds Strategy Games


Written by: Michael Shackleford